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Abstract The determination of thermal-stress concentrations near inclusions in viscoelastic random composites
is concerned with the prediction of the overall response of random nonlinear viscoelastic multi-component media.
The continuum considered here is assumed to be subjected to a finite deformation. First Piola’s stress tensor and
deformation gradient are used as conjugate field variables in a fixed reference state. A nonlinear problem is inves-
tigated in a second-order approximation theory when the gradient deformation terms higher than second order are
neglected. A convex potential function in a thermo-elastic problem and time functionals in a viscoelastic one are
used to construct overall constitutive relations. The technique of surface operators developed by R. Hill and others
is used to determine stress concentrations near inclusions for nonlinear matrix creep.
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1 Introduction

The determination of stress concentrations near inclusions and the prediction of the overall properties of inhomo-
geneous media are problems of great importance. This work is concerned with estimating the overall response and
local stress distribution in a random multi-component composite with nonlinear thermo-viscoelastic constituents.
The thermo-elastic properties of inhomogeneous structures have been studied intensively during the last decades
[1–3], etc. Many questions arise in the case of nonlinear thermo-viscoelastic response [4,5]. Composite materials
are often used in structural applications due to their well-known advanced properties. The prediction of the behavior
of these materials is an important step in the process of its implementation in structural design. Inclusion-reinforced
thermo-viscoelastic materials are the subject of this investigation. Much effort has been devoted to the determination
of the effective linear thermo-elastic properties, singular stress fields and deformation near the tip of cracks etc.
It is usually assumed that the inclusions are imbedded in a linear defect-free continuum. As a result, three topics
are important, namely macroscopic interacting cracks and multi-component inclusions [6], distributed microscopic
damage [7,8] and third the nonlinear properties of the constituents [5,9,10]. The early analytical work regard-
ing damage of composites used linear elastic fracture mechanics, making it less successful in applications than
those applied to metals. The new approach has been created recently which would be a fruitful tool in composite
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micro-mechanics. One of these developed in the last few years is a mathematical model involving a multi-particle
effective field method (MEFM) that has reached a level at which many practical and significant problems can be
solved [6]. The effective field method is applied to the calculation of the overall dielectric permittivities of composite
materials [11] consisting of a homogeneous matrix and a set of spherical inclusions. The main hypothesis of the
classical version is the assumption that the field acting on every inclusion in the composite is constant, the same
being true for all the inclusions. The predictions of this version of the method are usually in agreement with exper-
imental data and numerical solutions for effective properties of composites if the volume concentration is rather
small. So the new version of the effective field method has been developed for the improvement of the predictions
of the overall properties of the composites in regions where the volume concentrations of the inclusions is high.
This paper is devoted to a study of these models.

2 Problem statement and definition

Increasing the strength and reliability of constructions made from composite materials is largely a complex multi-
parametric problem [12,13]. One of its solutions concerns the evaluation of the stress concentration in microstructural
elements and the formulation of required durability criteria corresponding to classical methods of strength theory.
The service life of products involving composite materials is dependent on the average or maximum cyclic stress
both in the matrix and the inclusions, on the number of load cycles etc. Moreover, many behavioral singularities
of non-homogenous materials can be given only in terms of nonlinear mechanics [5,14–16]. Therefore, devel-
oping algorithms for designing new multi-constituent composites with advanced properties requires an in-depth
study of the stress in microstructural elements and the calculation of the overall thermo-elastic parameters within
the scope of nonlinear continuum theory. The results given in [1,3,17] involve effective thermo-elastic modules
of nonlinear compressible and incompressible random composites containing two components: a matrix and a
set of inclusions. The problem addressed in [10] concerns the microstructure stress determination in nonlinear
incompressible multi-constituent composites. The present study continues the previous investigations [18–20] and
summarizes the problems for compressible materials. The ideas regarding multi-particle effective field methods
[11,21] and Mori–Tanaka’s scheme [22] are implemented in a new approach. The solution of the first iteration for
small inclusion concentration is based on results obtained earlier in [20]. First, a representative volume vR of the
composite body B taken in a reference configuration is considered. It is assumed that the composite specimen is
subjected to some non-random system of loading. The stress and strain fields vary from point to point. If every
detail of the geometry of a composite were known, overall properties could be calculated exactly and, as a result,
local stress concentration as well. In practice, however, except in cases such as those that display periodicity etc.,
a complete solution could not even be computed. So random media may be used as a useful model useful for the
solution of engineering problems. A random medium is understood here as belonging to a family, any member of
which may be characterized by a label α that belongs to a sample space A. For a multi-phase composite material it is
convenient to introduce the indicator function fr(x), that takes the value 1 if it lies in phase r and zero otherwise. It
depends on α which denotes individual members of a sample space A, defined by Pr(x). Let the probability density
of α in space A be p(α). Then the mean value or ensemble average E[fr(x)] of the indicator function fr(x) defines
the probability of finding phase r at x ∈ B. Thus

Pr(x) = E [fr(x)] =
∫

A

fr(x, α)p(α)dα, (1)

i.e., the operation of statistical averaging is denoted by the mathematical expectation symbol E(·) which expresses
the condition of which set a point belongs to. Likewise the probability Prs(x, y) of finding simultaneously phase r

at x and phase s at y is the mathematical expectation

Prs(x, y) = E
[
fr(x)fs(y)

] =
∫

A

fr(x, α)fs(y, α)p(α)dα. (2)
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We assume that the functions fr(x, α) are known [21] and there is in each of the volumes vr , r ∈ [1, n + 1] a
viscoelastic material with properties governed by the stored-energy function W (F, t) of third order [16] with
respect to the displacement gradient

1

µ
W (F, t) =

(
1 + 1

2
α1

)
I 2

1 − 2I2 − β4I1T + β1I
3
1 + β3I1I2 + β3I3 + O

(
|H|4

)
, (3)

where F(x, t) is a deformation gradient and t is the time. Further, H(x, t) denotes the gradient of the displace-
ment vector u(x, t) in the coordinates x of the reference configuration; Ik (k = 1, 2, 3) are the main invariants of
Lagranges’s finite-strain tensor E(x, t) = 1

2 (FT F − 1) and the material functions µ, α1, β1, β2, β3, β4 stand for
convolution-type integral operators of nonlinear viscoelasticity, for example

µ(t) = µ ∗ dE =
t∫

0−
µ(t − τ)dE(τ). (4)

Here µ(t) is a relaxation function. So the Stieltjes integral in (4), if the derivative Ė(t) = ∂E/∂t exists (no jumps),
can be transformed to the usual Niemann integral by setting dE(t) = Ė(t)dt [4]. The minus superscript in the lower
limit of the integral indicates that the integration must begin just before t = 0 which is necessary when the loading
starts with a jump at time t = 0. The functions µ(t), α1(t), βk(t) (k = 1, 2, 3, 4) are reduced to thermo-elastic
constants in the purely thermo-elastic case (t = 0). The temperature increment is denoted by T and 1 is a symmetric
unit tensor of the second order [15]. So the stored energy (3) in the viscoelastic material may be expressed according
to the Staverman–Schwarzl formula as follows [4]

W(F, t) = 1

2

t∫

0−

t∫

0−
λ̂ (2t − t1 − t2) dE (t1) dE (t2) + 1

3

t∫

0−

t∫

0−

t∫

0−
ν̂ (3t − t1 − t2 − t3) dE (t1) dE (t2)dE (t3)

−
t∫

0−

t∫

0−
β̂ (2t − t1 − t2) dE (t1) dT (t2).

After being averaged over the non-deformed representative volume vR of the composite body B, the first asym-
metric Piola stress tensor σ(x, t) and the deformation gradient F(x, t) can be used as conjugate variables [14,16]
of the nonlinear continuum theory. It follows that the state equations of the thermo-viscoelastic medium can be
written as (see [4])

σka(x, t) = ∂W(F, t)/∂Fka. (5)

Then, for the first and second approximation of the displacement-gradient values [16] one has

σij(1)(e) = λ̂ijkl ∗ dekl(1) + tij (T ),

σij(2)(e) = λ̂ijkl ∗ dEkl(2) + [dHim ∗ λ̂mjkl ∗ dekl + dekl ∗ ν̂ijklmn ∗ demn](1). (6)

Here

eij = 1

2
(Hij + Hji), Hij = Fij − δij , Eij (2) = (eij + dij )(2),

dij(2) = 1

2
(HmiHmj )(1), λ̂ijkl = µ(α1δij δkl + 2Iijkl), tij = −βT δij ,

ν̂ijklmn = 1

2
ν1δij δklδmn + ν2(δij Iklmn + δklIijmn + δmnIijkl) + 4ν3Iijklmn,

Iijkl = 1

2
(δikδjl + δilδjk), Iijklmn = 1

2
(IipklIjpmn + IjpklIipmn),

ν1 = 2µ (6β1 − 3β2 − 5β3) , ν2 = −µ (β2 + β3) , ν3 = µβ3/4, β = µβ4.
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The subscript in parenthesis stands for the order of approximation of the nonlinear displacement; δij is the Kro-
necker delta, λ̂ and µ̂ are convolution-type integral operators of viscoelasticity (4) or second-order Lamé elastic
modules in the case of linear elastic-strain theory. The functions ν̂1(t), ν̂2(t) and ν̂3(t) are convolution-type integral
operators of nonlinear viscoelasticity or Lamé third-order constants [16]. When the matrix response is nonlinear
but in an elasto–visco-plastic sense rather than simply viscoelastic, it is more convenient to use the stored energy
in the form (see [5,9]):

W(F, t) = µ

[(
1 + 1

2
α1

)
I 2

1 − 2I2 + β1

(
I 2

1 − 3I2

) 1+n
2n − β4I1T

]
. (7)

Here µ, α1, β1, β4 and n are material constitutive functions or constants in the case of plastic response. Hence the
stress–strain relation will be

σij = λ̂ijabEab + ν3(I
2
1 − 3I2)

1−n
2n KijabEab − βT δij , Kijab = Iijab − Jijab, Jijab = 1

3
δij δab. (8)

Included in this family of materials (8) is a linear viscoelastic solid with n = 1 and a rigid perfectly visco-plastic
solid with n = ∞. These constitutive relations are particularly suitable for the investigation of a wide range of
material behaviors [15].

3 Two-phase linear viscoelastic material

The stochastic equilibrium equations and the boundary conditions of the first linear approximation can be written
in the form [3,5]

L̂u(1) (x, t) = b(1) (x, t) , x ∈ B,

u(1) (x, t) = 0, x ∈ ∂B,

b(1) (x, t) = −f (x, t) e(1) (x) , f (x, t) = λ̂ (x, t) − λ̂0,

σ
ij

(1)(t) =
∫ t

−∞
λ̂ijkl (t − τ)

∂ekl (τ )

∂τ
dτ −

∫ t

−∞
β̂ij (t − τ)

∂T (τ)

∂τ
dτ ,

u(1) (x, t) = uR
(1) (x, t) − ū(1)(t), (9)

where ∂B is the boundary of a compressible composite body B, uR(x, t) is a random displacement vector, a dash
above a symbol indicating the result of a statistical averaging in the sample with random relaxation functions λ̂(x, t)

and β̂(x, t). Fourier transform L̂(k) of operator L̂(∇) is defined in [1,5] and by others as follows[
L̂(k)

]
im

= λ̂0
ijmnkj km, λ̂0 = µ0(α0

11 ⊗ 1 + 2I). (10)

Here λ̂0 is an elasticity tensor of the homogenous comparison body, that is, the parameters µ0, α0
1 are constants

within the volume vR ∈ B. The unit symmetric tensor of the fourth order is denoted by I and τ(x, t) is a stress
polarization tensor [5]. The Green’s function u∗(x) of the elasticity equation (10) can be defined from the following
relation [3]

L̂(∇)u∗(x) + Iδ (x) = 0. (11)

As δ(x) is the 3D Dirac function here, one has

u∗
im (k) =

[
L̂(k)

]−1

im
. (12)

Using the technique described in [18,23], one may write the solution as a convolution-type integral over the B ∩ t

domain:

e(1)(x1, t) = �(x1, x2, t, t
′) ∗ τ(1)

(
x2, t

′) , (13)
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where �(x1, x2, t, t
′) is an operator with the kernel expressed through derivatives of the Green’s function

u∗(x1, x2, t, t
′).

Take now a two-phase isotropic material with the viscoelastic matrix being reinforced by randomly oriented
spatially distributed inclusions of ellipsoidal form. The result of �(x, y, t, t ′) convolution with any second-order
tensor function b(y, t ′) may be obtained by the integral [1]

(� ∗ b)ij =
∫

B

u∗
a(i,j)b(x − y)b(y, t ′)dy +

∮

∂B

u∗
a(i,j)(x − y, t ′)bnbdy. (14)

With the boundary condition b(y, t) = b0, ∀y ∈ ∂B it can be transformed to the simpler relation [3]

(� ∗ b)ij =
∫

B

u∗
a(i,j)b(x − y, t, t ′)[b(y, t ′) − b0]dy. (15)

The nonlinear viscoelastic properties of the inclusions are defined by the Wi (F, t) potential, and that of the matrix
are defined by the Wm (F, t) potential, i.e., i = 1 and m = 2 for a two-phase material. Averaging of (15) requires the
argument coordinate x of the left-hand part to be placed in the va volume containing inclusions of the na-direction,
a ∈ [1, n], which results in

ea (x1, t) = �(x1, x2, t, t
′) ∗

[
f i

n∑
b=1

eba
(
x2, x1, t

′)pb|a(x2, x1) + fmema
(
x2, x1, t

′)pm|a(x2, x1)

]
. (16)

Here we take the following notations for the statistical-moment function mba

mba (x1, x2, t) = E [m (x1, t) |x1 ∈ vb, x2 ∈ va] ,

pb|a(x1, x2) = p(x1 ∈ vb|x2 ∈ va).

The probability densities of the distribution when going from the state of x1 ∈ va , that is from an inclusion of the
na-direction, to the state of x2 ∈ vb, that is to a inclusion of the nb-direction, and to the state of x2 ∈ vm, where vm

is the matrix volume, are written as follows [1]

pb|a(x1, x2) = p (x1, x2) δba + cbp
∗ (x1, x2) (1 − δba),

p (x1, x2) = ca + c∗
aϕ(x1, x2), pm|a(x1, x2) = cmϕ∗ (x1, x2) ,

p∗ (x1, x2) = 1 − p (x1, x2) , ϕ∗ (x1, x2) = 1 − ϕ (x1, x2) ,

ϕ∗ (x1, x2) = 1 − ϕ (x1, x2) . (17)

Here ϕ (x1, x2) is a two-point correlation function of the viscoelastic field, ca denotes volume concentration of the
set Xa of inclusions of the na-direction and cm is the matrix volume concentration.

Integration of Eq (9) is carried out by the technique proposed in [3,19,24], the algebraic matrix of the g-operator
obtained from the integral convolution � ∗ ϕ being composed of

kg = g1(j1 + r3)/2, lg = −g1r3, lTg = lg, ng = 2g1(j1 + r3),

mT
g = g0j2 + kg, mg = g0(1 + j1) + 2lg, g0 = −(2m0)

−r1, g1 = −(2n0)
−1, r3 = k0µ

−1
0 j3. (18)

Here the common notations [5] are used to define the elements of the algebraic matrix g

kg = (g11 + g12)/2, lg = g13, lTg = g31, ng = g33, mT
g = 2g66, mg = 2g44. (19)

The parameters j1, j2, j3 are defined by

j1 = (
jw/

√
r − 1

)
/r, j2 = 1 − j1, j3 =

[(
1 + 2w2

)
j1 − 1

]
/ (2r) ,

r = w2 − 1, j = arch (w) , (20)
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where w stands for the aspect ratio of longitude and transverse sizes of a spheroidal inclusion. Statistical strain fluc-
tuations ea of Xa-set inclusions are expressed through the mean deformation of the matrix em in the representative
volume vR of the composite body B

ea = cma′em
, a′ = zL, L(x) = λ̂(x) − λ̂m. (21)

The parameter cm denotes the volume matrix concentration; the transversally isotropic tensor z is given by the
relation

z = (g−1 − f)−1. (22)

After averaging (21) over the set Xa of inclusions of all possible orientations, we define the statistical average
strains of inclusions ei and that of the matrix em through macro-strains e0 of the representative volume vR

ei = Aie0, em = Ame0, Ai = Am(1 + a), Am = (1 + cia)−1, a = 〈zL〉. (23)

Angular brackets denote the here the operation of statistical averaging over the set X of all possible orientations.
Using the expressions (5), the linear relaxation functions λ(t), µ(t) and the thermo-stress operator β(t) for a
two-component random composite material take the following form

λe = E(aκ) − 2µe/3, µe = E(bµ), βe = E(aβ), (24)

where

κ = (3λ + 2µ)/3, a1 = a2 (1 + 3azκL) , a2 = (1 + 3c1azκL)−1 , b1 = b2 (1 + 2bzµL) ,

b2 = (1 + 2c1bzµL)−1, az = 1

3
(4k + 4l + n)z, bz = 2

15
(k + n − l + 3m + 3p)z.

Here we use the condition c1 = ci ; the elements of the algebraic matrix z are determined from (18), (22) and
κL, µL are defined by (21).

4 Multi-component compressible viscoelastic linear composites

In the case of multi-phase viscoelastic composite materials, we apply the multi-particle effective-field technique
MEFM [6,11], in the refined approach of the conditional-moment method [3] and the Mori–Tanaka scheme [10,22].
Thus, consider the set of operators for the deformation field of components and the appropriate micro-values. The
exact solution is assumed to exist:

ea = Giem + et = Giem + α̂t T . (25)

Then, the tensors Ai , Am, where i is the number of inclusions with the viscoelastic potential Wi(F, t), i ∈ [1, n]
and m is the subscript of the matrix with a viscoelastic potential Wm(F, t), (m = n + 1), are defined through the
expressions

Ai (x, t) = Gi (x, t)Am(t), Am(t) = 1/E[G(x, t)]. (26)

An approximate solution can be derived by replacing in the general case the unknown operator Gi by the approx-
imated operator Ti (by the operator of the deformation concentration) for the mean deformations of inclusions
denoted by i, i ∈ [1, n], and the mean strains of the representative volume vR , that is

ei (x, t) = Ti (x, t)e(x, t) + α̂t (x, t)T . (27)

Next, to define the tensors Ai , Am, we obtain the formulas

Ai (x, t) = Ti (x, t)Am(t), i ∈ [1, n]; Am(t) = 1/E[T(x, t)]. (28)

In the present investigation we define the G(x, t) operator from the solution based on the one-point approximation
of the multi-particle effective field or conditional statistical moment functions for two-phase media, [3] i.e.,

G(x, t) = T(x, t) = 1 + a(x, t), a(x, t) = 〈
a′(x, t)

〉
. (29)
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Here the algebraic matrix ai results from analyzing the stress–strain state in the set Xi of inclusions. Thereby, to
define the tensors Ai , Am or simply A(x, t), the following expressions are derived:

A(x, t) = Am(t)[1 + a(x, t)], Am(t) = 1/E[a(x, t)]. (30)

As in the case of incompressible materials [10], we can immediately demonstrate that the presentation of tensor
A(x, t) for a two-phase material (30) is identical to (23). In particular, this means that the accuracy of the results
(30) is in agreement with the accuracy level of solutions derived by the multi-particle effective-field technique [21]
or conditional statistical moment functions for multi-component composite media [3].

5 The second-order nonlinear viscoelastic solution

The equilibrium equations for statistical fluctuations of a second-order displacement w(x, t) = u(2) (x, t) in the
representative reference volume vR are written in the form [16]

L̂ (∇) w (x, t) = −∇τ(2) (x, t) , x ∈ B;
w (x, t) = 0, x ∈ ∂B;
τ(2) (x, t) = f (x, t) ∗ de(2) (x, t) + t (x, e, H, t) ,

t (x, e, H, t) = −βI1T 1 + 1

2
λ̂

(
HT H

)
(1)

+ H(1)

(
λ̂e(1)

)
ν̂ (e ⊗ e)(1) . (31)

The linear differential operator L̂ on the left side of the first equation of (31) agrees in form with the corresponding
operator (9). This enables us to make use of the Green’s function of the linear problem. Hence we can derive integral
equation [19] defining the displacement gradient of the second-order approximation

H(2), (x1, t) = �
(
x1, x2, t, t

′) ∗ τ(2)

(
x2, t

′) . (32)

Statistical averaging of expression (32) is performed when the left-hand part of argument x is placed in the vol-
ume va of an ellipsoidal inclusion with Wi properties and oriented in the na-direction. Then, to define the mean
deformation of inclusions oriented in this direction, we obtain the following equation

ea
(2) (x1, t) = �

(
x1, x2, t, t

′) ∗
n+1∑
b=1

τba
(1)

(
x2, x1, t

′) pb|a (x2, x1) . (33)

According to the proposed calculation scheme we find the solution of this equation after integrating with probability
density functions of the type (17). Herewith, the nonlinear part on the right-hand side of (33) is expressed through
macro-deformations e0

(1) of the representative volume of composite that are already known in the first approximation

H(1)(x, t) = A(x, t)e0
(1) + R(1)(x, t), x ∈ B; R = skew(H) = 1

2

(
H − HT

)
. (34)

After some elementary analysis we obtain

e(2)(x, t) = A(x, t)e0
(2) + eA (x, t) , x ∈

⋃
Bi, i ∈ [1, n];

A(x, t) = [1 + a(x), t] Am(t), a(x, t) = 〈zL〉,
Am(t) = [1 + E[a(x, t)]]−1 , eA(x, t) = [1 + a(x, t)] eAm(t) + b(x, t), eAm(t) = −Am(t) [E(b)] ,

b(x, t) = 〈ztL〉, tL(x, t) = t
(
x, e(1), H(1), t

) − tm
(
e(1), H(1), t

)
. (35)

Here, the normalization conditions for the operators A(x, t) and eA(x, t) are satisfied, i.e.,

E[A(x, t)] = 1, E[eA(x, t)] = 0, ∀(x) ∈ B. (36)
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By substituting the solution (35) in the averaged physical relations of second order taken from (5), we benefit from
the application of the Cauchy macro-stress tensor T(t), the second Piola’s macro-stress tensor S(t) = µŜ(t) and
the deformation gradient F(t) to the multi-component compressible isotropic composite:

T(F, t) = µJ−1FŜ (F, t) FT (t), J = det (F(t)) ,

Ŝ (H, t) = α1I11 + 2E − β4T + 3β1I
2
1 1 + β2I21 + β2I1 (I11 − E) + β3 (I21 − I1E) + E2,

α1 = λ/µ, β1 = (ν1 + 6ν2 + 8ν3)/ (6µ) , β2 = −2 (ν2 + 2ν3) /µ, β3 = ν3/µ, β4 = β/µ. (37)

The overall relaxation functions of second and third order are defined by

λe = E(aκ) − 2µe/3, µe = E(bµ), νe = E(aimνm + bi), βe = E(aβ), (38)

where

a11 = a3, a12 = 2a(a2 − b2), a13 = 2l2(a + 2b), a22 = ab2, a23 = 4b2l, a33 = b3,

b1 = 3l [λa (a + b) + 2µl (a2b)] , b2 = b2 (λa + 6µl) /2, b3 = 3µb3/4.

Here we have l = (a − b)/3; the coefficients a, b are defined by (35) and µr, κr , ν1r , ν2r , ν3r are the relaxation
functions of second and third order of the r-component, E(·) denotes the statistical averaging (1). Taking into
account terms of second order only, Eq. (37) takes the form

T̂ = (α1I1 − β4T )1 + 2e +
(
αf0 + α3I

2
1 + α4I2

)
1 + α5I1e + HHT + α6e2 + O(|H|3),

α3 = (3β1 + β2 − α1)/µ, α4 = (β2 + β3) /µ, α5 = (2α1 − 2 − β2 − β3) /µ, α6 = (4 + β3) /µ. (39)

Following the technique of [17], we have the following expressions for the tensor coefficients of the stress concen-
tration in the elements of multi-component viscoelastic material

σ(x, t) = Kc (x, H, t) σ 0, Kc (H, x, t) = B(x, t) + b(H, x, t),

B(x, t) = λ̂(x, t)A(x, t)µ̂e(t), µ̂e(t)b(x, t, σ 0) = λ̂(x, t)eA(x, t)/σ 0, (40)

where µ̂e = (λ̂e)−1 is the overall strain compliance function. The stress concentration tensor B(x) may be written
more simply as [20]

B(x, t) = Bm(t)[1 + b(x, t)], Bm(t) = [1 + E[b(x, t)]]−1, b(x, t) = qM, q = (p−1 − r)−1,

p(t) = −λ̂0( + g(t)λ̂0), r(x, t) = µ̂(x, t) − µ̂0, M(x, t) = µ̂(x, t) − µ̂m(t), µ̂0 = (λ̂0)−1. (41)

Then for a single inclusion vI ∈ B we will get

BI (x, t) = 1 + b(x, t), b(x, t) = q(x, t)M(x, t). (42)

When the elasticity tensor of a comparison body is defined by λ0 = λm [5], the well-known Eshelby solution for
the stress in a single inclusion [25] follows immediately:

BIE(t) = (1 − pM)−1, p(t) = 1 − λ̂m(t)[1 + g(t)λ̂m(t)]. (43)

As a result, an effective stress-field hypothesis of MEFM [6] may be used naturally to determine the stresses in any
inclusion vI loaded by an equivalent or effective field σ̃ I (x, t) in a nonlinear viscoelastic matrix.

6 Local stress field near an inclusion in nonlinear viscoelastic composites

The refined approach of the conditional-moment method (CMM) [3] with the hypothesis of a multi-particle
effective-field method [6,11] is proposed here to investigate the local stress field near an inclusion in a viscoelas-
tic random composite. We consider now a nonlinear viscoelastic composite medium [15] with stress-free strains
h(x, t) consisting of a homogeneous matrix containing a homogeneous and statistically uniform random set Xi

of spheroidal inclusions all having the same form, but random orientation and mechanical properties. We will be

123



Thermal-stress concentration near inclusions in viscoelastic random composites 347

using the approach of CMM [20] with the main hypothesis of many micro-mechanical methods, according to which
each inclusion is located inside a homogeneous so-called effective or equivalent stress field σ̃ . It is shown, in the
framework of the effective-field hypothesis [6] that, from a solution of the classical linear elastic problem with zero
stress-free strains for the composite, the relations for the effective nonlinear, stored energy and average viscoelastic
strains inside the components can be found.

For a single inclusion the micro-mechanical approach is based on the Green-function technique [5], as well as on
the interfacial Hill operators [17,26]. As a generalization of the results [10], we consider here a certain representa-
tive meso-domain B with a characteristic function fB(x, α) containing a set XI of inclusions vI with characteristic
functions fI (x, α), (I = 1, 2, 3, . . .). The inclusions are defined as the I -component having identical mechanical
and geometrical properties. It is useful to define the equivalent field σ̃ as a stress field in which the chosen fixed
inclusions are embedded. This equivalent field is a random function of all the other positions of the surrounding
inhomogeneities; the average over a random realization of these inclusions is equal to the right-hand side of the
integro–differential system of equations for a non-homogeneous domain [3,21,27].

More detailed considerations of the mechanical behavior of nonlinear composite materials requires an analysis
of the interface between the reinforcement and the matrix [17]. The inhomogeneity of mismatch properties in the
matrix is a typical situation due to both the production of the coated inclusions and thermo-visco-plastic deformation
of the matrix near the inclusion. The micro-mechanical approach is based on the Green-function technique [3,5,6],
as well as on the interfacial Hill operators [26]. An assumption of a homogeneous stress state in the inclusion is
used. At first we consider the problem of a single inclusion inside an infinite nonlinear viscoelastic matrix. Stress
and strain are related to each other via the constitutive equation (see [15])

σ(x, t) = ∂W(x, t)/∂F(x, t) (44)

or

σ(x, t) = λ̂(x, t) ∗ de (x, t) + t(x, F, t), e(x, t) = µ̂(x, t) ∗ dσ(x, t) + h(x, F, t), (45)

where λ̂(x, t) and µ̂(x, t) = λ̂−1(x, t) are the given phase linear relaxation and strain compliance functions, respec-
tively, and the common notation for tensor products [16] has been employed. The thermal and nonlinear parts of the
constitutive relations are represented by t(x, F, t) and h(x, t) = −λ̂(x, t)t(x, F, t), which are second-order tensors
of the local eigenstresses and eigenstrains (transformation fields) which may arise by thermal expansion, plastic
deformation, phase transformation and other changes of shape or volume of the material. We assume that the phases
are perfectly bonded, so that the displacements and the traction components of the stresses are continuous across
the inter-phase boundaries. We assume uniform external traction boundary conditions

T(x, t) = σ 0n(x, t), ∀x ∈ ∂B, (46)

where T(x, t) is the traction vector at the external boundary � = ∂B of the meso-domain B, n(x, t) is its unit outward
normal vector, and σ 0 is a given constant stress tensor. Of course, the conditional-moment method presented in
detail in [1] deserves to be viewed critically along with other methods. Concrete numerical results were obtained
there by truncation of an infinite system of integral equations by taking into account only two-point conditional
probabilities, and by neglecting fluctuations of stresses within the limits of the components. These are equivalent
to adopting the assumption of homogeneous elastic fields and the consideration of homogeneous inclusions. Here
we introduce a comparison body [3,5] whose mechanical properties are denoted by the upper null index. So λ̂0 will
usually be taken uniform over B; as a result, the corresponding boundary-value problem is easier to solve than that
for the original body with random viscoelasticity λ̂(x, t). All tensors of the material properties are decomposed as

t(x, t) = t0(t) + tf (x, t). (47)

The Hill condition [26] for the elastic-energy representation holds for any compatible strain field from (47) and an
equilibrium stress field σ 0 (46) not necessarily related to each other by a specific stress–strain relation. Here and
in the following the upper lower-case index i indicates the components and the lower upper-case index I indicates
the individual inclusion.
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Let us consider some conditional statistical averages of the general integral equation (31) leading to an infinite
system of integral equations (33). Concrete numerical results may be obtained for aligned or disordered homo-
geneous ellipsoidal inclusions under different choices of comparison media, that is, either the λ̂0 = E[λ̂(x)] or
λ̂0 = 1/E[µ̂(x)] estimate. Of course, there is no a priori justification for the specific choice of λ̂0, not counting
the condition that the quadratic form, employed in the proof of the Hashin and Shtrikman variational principle,
has a constant sign. The only justification up to the recent publication of Talbot and Willis [28] for choosing for
λ0 the Vought or Reuss estimate was the fact that specific experimental data agree with the computed curves [3].
The final general representation for effective modules was taken into account in the conditional-moment method
[1]; the equivalence of the admitted assumptions leads to the conclusion that the conditional-moment method can
be considered as equivalent to the one-particle approximation of MEFM. In addition, in the conditional-moment
method the shape of the inclusions is taken into account via prescribed anisotropy of the conditional probability
density.

For equally probable orientations of the spheroidal inclusions it is possible to obtain an isotropic function and
the estimate of the effective compliance function will be invariant with respect to the shape of the inclusion. This
result can be avoided easily by taking into account directly the shape of the inclusions via the tensor, as done by
Willis [5] on the basis of a variational principle.

We use here the refined conditional-method approach that for randomly oriented ellipsoidal inclusions the estimate
of the effective modules represented in [3,17], and [5] is equivalent. In the case of a nonlinear composite, a bound
on its effective energy density does not imply a corresponding bound on its constitutive relation. Recently Talbot
and Willis [28] proposed a refined method for bounding directly the constitutive relation by employing a linear
comparison material. It seems a very sensible aspect of the approach proposed here that the bounds produced are
closely related to bounds of Hashin–Strikman type and a comparison elasticity of Voigt and Reuss type is used. So
the determination of comparison elasticity from certain experiments [1] is now established by the effective energy
of a nonlinear composite evaluation.

According to Eshelby’s equivalence principle [25], the perturbed strain field e′(x, t) induced by inhomogene-
ities (inclusions with properties different from those of the homogeneous matrix) can be related to the specified
eigenstrain by replacing the inhomogeneities with the matrix material. That is, for the domain of the r-phase
inhomogeneities with the λ̂r elasticity tensor we have

λ̂r (t)[e0 + e′(x, t)] = λ̂m(t)[e0 + e′(x, t) − e∗(x, t)], (48)

where λ̂m(t) is the relaxation function of the matrix and e0 is the uniform strain field caused by far-field loads
for a homogeneous matrix material only; λ̂m(t) and λ̂r (t) could be isotropic or anisotropic if the eigenstrain field
e∗(x, t) is uniform in vI . So the strain at any point within an RVE is decomposed into two parts: (a) a uniform strain
e0 (without inhomogeneities), and (b) a perturbed strain e′(x, t) or actual constrained strain due to the distributed
“stress-free” transformation strain or eigenstrain e∗(x, t). It is emphasized that the eigenstrain e∗(x, t) is nonzero
in the inclusion domain and zero in the matrix domain, respectively. In particular, the perturbed strain field induced
by the distributed eigenstrain e∗(x, t) can be expressed as

e′(x, t) =
∫

B

G(x − y)e∗(y, t ′)dy dt ′, (49)

where B is the domain of an RVE vR and x, y ∈ B. Eshelby used a fourth-order tensor S, which is traditionally
called Eshelby’s tensor, to describe the strain and stress fields in the inclusion domain. Eshelby’s tensor is defined
as

S(x) =
∫

BI

G(x − y)dy, (50)

in which x is a local point inside the inclusion domain BI . The total strain e(x, t) at any point x ∈ Bm in the
matrix is given by a superposition of the uniform strain e0(t) and the perturbed strain e′(x, t) induced by inclusions
(inhomogeneities)
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e(x, t) = e0(t) + e′(x, t) = e0(t) +
∫

B

G(x − y)e∗(y(t ′))dy. (51)

Therefore, the volume-averaged strain tensor is given by

ē(x, t) = e0(t) + 1

vB

∫

B

∫

BI

G(x − y)e∗(y)dy dx =e0(t) + 1

vB

∫

B

⎡
⎣

∫

B

G(x − y)dx

⎤
⎦ e∗(y)dy. (52)

When considering the strain and stress fields at a local point x outside an inclusion, we define a fourth-order tensor
G̃(x), which is called the exterior-point Eshelby tensor

G̃(x) =
∫

Bm

G(x − y)dy, x ∈ B/BI . (53)

The essential assumption in the Mori–Tanaka approach states that each inclusion vI behaves as an isolated one in
the infinite matrix λ̂0 = λ̂m and subjected to some equivalent or effective stress field σ̃ (xI ) = σm coinciding with
the average stress in the matrix. This assumption allows uniquely to define the effective nonlinear elastic properties
of multi-component composite materials [10,29,30]. On the other hand, this hypothesis is more restrictive than the
hypothesis H1 of MEFM [6]. It gives an opportunity to use the known solution [1,5] and others for each inclusion
vI and to find the average stress in the matrix by use of a representation of the average stresses in the separate
phases as the average stress in the whole composite. It makes possible to represent the statistical average of both the
stresses in the matrix and the strain polarization tensor in the inclusions, as well as to an estimate of the effective
properties.

Using the standard Green-function technique, we transform (31) into an integral. By doing so we obtain an
estimate of the stress distribution inside the inclusion σ I and σ�(s) in accordance with (40). Therefore, the stress-
concentration tensors B(x, t), σBI (x, t) in (40)–(43) are found to be

B(x, t) = const, σBI (x) = const, ∀x ∈ BI (54)

and

B(x, t) �= const, σBK(x) �= const, ∀x ∈ BK. (55)

After that the tensors R(x, t) and eRI (x, t) are defined by (54) and the nonlinear viscoelastic properties of the
homogeneous inclusions M(x, t) are evaluated by the relations (41). Hence, the nonlinear viscoelastic problem for
a single inclusion is completely solved and we arrive at the estimate of the overall nonlinear relaxation functions
λ̂e(t), β̂e(t) and ν̂e(t) from (38) and the average stresses (37) inside the components by using different tensors
σB (x, t). Some particular methods involving such tensor approaches are given in [1,5,6]. Different versions of
closure assumptions in terms of conditional stress fields analogous to the hypothesis H2 of the MEFM for the effec-
tive stress fields are known [6,11]. The first-order approximations of these similar approaches and the principal
difference between them is beyond the scope of direct substitution of the stress field for the equivalent field. Even for
statistically homogeneous composites it may be shown that the use of the different known and useful assumptions
can lead to a variation of the effective elastic modules by a factor of two or more. This fact has been confirmed by
experimental data [21]. Hence, any model simplification can be evaluated precisely.

Let us now consider a simplification of the elastic solution for different particular cases of inclusions. So
M(x, t) = µ̂(x, t) − µ̂m(t) is the jump of the strain compliance function of any component with respect to the
matrix. By this function the variation of the material properties within inclusions is taken into account. The integral-
operator kernel �(x, t) may be defined by the second-order Green tensor u∗ of the Lamé equation of a homogeneous
medium with an elastic modulus tensor λ̂0

�(x, t) = −λ̂0[1δ(x) + G(x, t)λ̂0], G(x, t) = ∇∇u∗(x, t); (56)

here δ(x) is the 3D Dirac delta function, 1 and I are the unit second- and fourth-order tensors, respectively. So we
may define the strain polarization tensors η̂(x, t) and η̂0

η̂(x, t) = Rσ̄ + η̂R, η̂0 = Rσ 0 + η̂R, ∀x ∈ BI . (57)
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Let us consider some conditional statistical averages of the general integral equation (32). In order to simplify the
exact system (31), we now apply the main hypothesis of many micro-mechanical methods, the so-called effective-
field hypothesis: each inclusion in domain B with measure has a spheroidal shape and is embedded in the field σ̃

which is homogeneous over the I -inclusion. The perturbation introduced by the inclusion vI in point x is defined
by the relation∫

B

fI (x)�(x − y)[M(x)σ (x) + h1(x)]dx =cI TI (y − x) 〈M(x)σ (x) + h1(x)〉I , (58)

where 〈f 〉I is an average over the volume of the inclusion vI and

cI TI (y − xI ) =
∫

B

fI (x)�(y − xI )dx, y /∈ BI . (59)

By analogy to [3,5,6] and in view of the linearity of every iteration, there exist constant fourth- and second-order
tensors B(x) and σB(x), respectively, such that

σ I (x) = BI (x)σ̃ I (x) + σBI (x), cI [M(x)σ (x) + h1(x)]I = R(x)σ̃ I (x) + eRI (x), x ∈ BI , (60)

where the tensors R(x) and eRI (x) are found by the use of the Eshelby Theorem [18]

R = −cip−1(1 − B), eRI (x) = cip−1σBI (x). (61)

The tensor p is associated with the Eshelby tensor S by

S = 1 + µ̂0p, p = 〈�(x − y)〉I = const, ∀x, y ∈ BI . (62)

In practice the tensors B and σBI are found [13,15,18] from the elastic problem of a single inclusion in the infinite
matrix Bm, when

cI = 0, σ̃ I (x) = σ 0 = const. (63)

This problem is connected with the calculation of the inhomogeneous fourth- and second-order tensors B(x), σBI (x)

by either analytical or numerical methods, such that for x ∈ BI the following holds:

σ(x) = B(x)σ 0 + σBI (x),

BI = 〈B (x)〉I , σBI =
〈
σBI (x)

〉I
,

R = cI 〈M(x)B(x)〉I , eRI = cI

〈
M(x)σBI (x) + h1(x)

〉I
. (64)

We consider here an analytical method for the calculation of the tensors B(x) and σBI (x) for spheroidal inclusions
in a sense of nonlinear field mechanics [16]. Other analytical methods for the analysis of spheroidal inclusions are
mentioned in [3,9]. In the general case, estimating of the tensors B(x), σBI (x) is a particular problem the analytical
method involving the transformation field eT (y) [5,6]. For the particular case of a homogeneous spheroidal domain
BI with inclusions MI = µ̂i − µ̂m = const, we have

BI = (1 + pM)−1, σBI = BI phI
1, RI = cI MBI , eRI = cI (1 + Mp)−1hI

1 . (65)

Comparing relation (5.25) with (4.10), one can see that the average nonlinear viscoelastic response (i.e., the tensors
B, σBI , R, eRI ) of any inclusion is the same as that of some homogeneous inclusion with nonlinear viscoelastic
parameters which also can be expressed in terms of the tensors R and eRI . In the case where a single spheroidal
inclusion of radius ai is embedded in an infinite matrix, the problem may be investigated in a fairly straightforward
manner:

λ̂m(3κm, 2µm) ≡ 3κmJ + 2µmK, Jijab = 1

3
δij δab, Kijab = (δiaδjb + δibδja)/2 − Jijab. (66)
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The tensors tm = −β̂mT 1+ ν̂m(e ⊗ e)m and ti = −β̂iT 1+ ν̂i (e ⊗ e)i have a special form with a physical meaning
represented by the constitutive equations (5). According to Hill [26] we define the projective operators e, f and E,
F of the second- and fourth-order, respectively, as follows:

E = 1 − F, F = [f ⊗ f + (f ⊗ f)T ]/2, fij = δij − eij , eij = ninj . (67)

Furthermore, the surface tensors are defined by

λ̂(n)± = λ̂±n, G(n)± = [λ̂(n)±]−1, BH (n)± = λ̂±[1 − AH (n)±λ̂±],
AH (n)±ijab = [ni(G(n)±ja)nb](ij)(ab). (68)

Here and below the symbols + and − relate to the different boundary sides. By testing we immediately obtain the
orthogonal properties of the operators defined in [26]

ee = e, ff = m, em = 0,

FF = F, EE = E, Em = 0, Fe = 0, EF = 0. (69)

Hence the tensors AH (n), BH (n) in (64) can be expressed in terms of the projective operators

AH (n) = [Eλ̂E]−1, BH (n) = [Fµ̂F]−1. (70)

Perfect contact between two materials means

Eσ+ = Eσ−, Fe+ = Fe−. (71)

So the following relations between the stress tensors near the interface may be used here [6,17,26]

σ− = σ+ + BH (n)−[(µ̂+ − µ̂−)σ+ + (h+ − h−)], σ+ = σ− + BH (n)+ [(µ̂− − µ̂+)σ _ + (h− − h+)]. (72)

Substitution of (72) in the right-hand side of (60) leads to

BH (n)− − BH (n)+ = BH (n)+(µ̂+ − µ̂−)BH (n)+ . (73)

Let a spheroidal inclusion vI with the homogeneous compliance function µ̂+ be located in an infinite homogeneous
matrix with compliance function µ̂− and loaded by the homogeneous stress σ 0 on the remote boundary �B . Then,
according to Eshelby’s theorem (with h = 0), we have

σ+ = σ 0 + pI (µ̂+ − µ̂−)σ+ σ− = σ 0 + cI TI (xI − x−)(µ̂+ − µ̂−)σ+. (74)

where the tensor pI of the inclusion vI is associated with the Eshelby tensor S by SE = 1 + µ̂−pI and the tensor
TI (xI −x−) is defined by the relation (5.19) for the point x− ∈ vI near the inclusion surface �i = ∂BI . Substituting
the relations (5.34) and (5.35) in (5.18), we obtain

cI TI (xI − x−) = BH (n)− + pI (75)

In particular for an isotropic medium with the viscoelastic relaxation function λ̂(t), the inversion of the matrix λ̂(n)

may be simplified

λ̂(n)ij = µδij + (κ + µ/3)eij , Gij = 1

µ

(
δij − 2κ + µ

3κ + 4µ
eij

)
,

AH (n)ijab = 1

m

(
Eijab − 3κ − 2µ

3κ + 4µ
eij eab

)
, m = 2µ, BH (n)ijab = m

(
Fijab + 3κ − 2µ

3κ + 4µ
fijfab

)
. (76)

The matrix stresses in the immediate vicinity of the inclusions vI denoted by σ−
I (n), are given by the formula

σ−
I (n) = σ+

I (n) + BH (n)[M(x)σ+
I + hI (x)]. (77)

where σ−
I (n) and σ+

I (x) are the limiting stresses outside and inside, respectively, near the inclusion boundary
�I = ∂BI

σ−
I (n) = lim σ(y), y → x, y ∈ vm,

σ+
I (x) = lim σ(z), z → x, z ∈ vI , x ∈ �I . (78)
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Here n is the unit outward normal vector on �I . The relation (78) is correct for any shape of the inclusion vI . The
tensor BH (n) depends only on the viscoelastic properties of the matrix material λ̂m(t) and on the direction of the
normal n. The expression for BH (n) is HB presented as follows

BH (n)ijab = m

(
Fijab + 3κ − 2µ

3κ + 4µ
fijfab

)
. (79)

By rearranging the latter equation into an integral equation and transforming it by a method developed earlier
[31,32], we obtain

σ(x) − �(x − y) ∗ η̂ = σ 0, � = −λ̂0(I + gλ̂0), η̂ = h + γ̂ , γ̂ = yσ, y = µ̂ − µ̂0. (80)

The jump of the strain compliance function M(x, t) of the r-component with respect to the matrix (m-component) is

M(x, t) = µ̂(x, t) − µ̂m(t) (81)

The integral-operator kernel is defined by the Green tensor G(x, t) of the Lamé equation of a homogeneous com-
parison medium with viscoelasticity λ̂0(t).

Equation (81) means that the average stress 〈σ 〉 = σ 0 is precisely determined and that the average strain 〈e〉 = e0

can be measured in terms of the boundary displacements. As a special case of spheroidal inclusions let us assume that
a1 = a2, where the spheroid aspect ratio is defined as w = a3/a1. Following [3,33], if all inclusions and the matrix
are viscoelastic, then for the particular case of the homogeneous spheroidal domain BI with M = µ̂i − µ̂m = const
we have

B = (1 − pM)−1. (82)

The tensor p is associated with Eshelby’s tensor S [25] by

S = 1 − pM, p = −λ̂0(1 + gλ̂0). (83)

The Eqs. (72) and (83) allow one to estimate the ensemble average of the matrix stresses in the vicinity of the
inclusions near a boundary point x ∈ �BI of inclusion BI .

7 Examples of numerical implementation

One of the objectives here is to study the nonlinear material response of polymer matrix-based composites. As an
example we select a glass-boron/epoxy material system. Epoxy is used as a bonding agent. The fiber is assumed
to remain elastic during deformation so that the inelastic effects are limited to the matrix phase. We will use a
Rabotnov-type kernel [3]

R (t) = τm−1
∞∑

n=0

(−1)n(t/τ )z−1� (z) , z = m(1 + n), τ = b−1/m, (84)

where m, b are viscoelastic parameters, �(z) is the gamma function and m = 1+α, b = −β in Rabotnov’s original
version with operator Eα(−β).

Although some experimental observations advocate a pressure-dependent behavior of such materials, the present
approach assumes negligible volume deformation during viscoelastic deformation [1]. Shear-deformation can be
described by the integral operator

µ̃m = µ0

[
1 − ξR̂ (m, b)

]
, R̂ (m, b) ∗ e (t) =

t∫

0

R (m, b, t − s) e (s) ds. (85)

or

R̂ (m, b) ∗ e0 = τm

{
1 −

∞∑
n=0

(−1)n xn/� [m (1 + n)]

}
e0,

x = (t/τ )m, (86)
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Fig. 1 Shear relaxation function µ(c1, t)
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Fig. 2 Second-order relaxation function β1(c1, t)

Fig. 3 Second-order
relaxation function β3(c1, t)
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Table 1 Material constants
Material µ(GPa) α1 β1 β2 β3 α · 106 (K−1)

Glass 29.2 0.66 13.29 1.03 14.38 4.6
Boron 172.4 2.45 −37.6 9.40 −9.05 8.3
Epoxy 1.14 3.24 −33.12 9.40 −33.16 65.0

Table 2 Epoxy viscoelastic
parameters

Material ξ (h)−m m b (h)−m

Epoxy 0.0564 0.5 0.1764

if e0 = const. The results shown in Fig. 1 illustrate the dependence of the shear-effective relaxation function µ(t)

on the volume concentration of glass c1. Curve 1 corresponds to a pure-elastic solution; curve 2 follows as a result
of a viscoelastic analysis for t = 10τ where, according to (86), τ is, relaxation time of Rabotnov’s kernel (84)

Further, Fig. 2 shows the variation of the second-order relaxation function β1(t) when the volume glass concen-
tration c1 increases. Figure 3 shows the dependence of the second-order relaxation function β3(t) on the volume
concentration of glass c1. Curve 1 corresponds to a purely elastic solution; curve 2 is determined as a result of
a viscoelastic analysis for t = 10τ . The calculation has been carried out with thermo-elastic parameters of the
constituents as given in Table 1 and the viscoelastic properties of epoxy are presented in Table 2.
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8 Conclusions

A nonlinear thermo-viscoelastic problem has been investigated in second-order approximation theory when gradient
deformation terms higher than second order are neglected. A convex potential function in the thermo-elasticity and
a time functional for the viscoelastic case are used to construct overall constitutive relations. Hill’s technique of
surface operators as developed in [26] and by others is used to determine the viscoelastic stress concentration near
inclusions in polymer matrix composites (PMC) for nonlinear matrix creep.

Initiation of failure in a PMC specimen [12] can be related to the nonlinear viscoelastic stress field near inclu-
sions. Nevertheless, more often one examines the distribution of extreme values for the stress in or near the elastic
inclusions. The early analytical work on the damage of the PMC used linear elastic mechanics, so it has been less
successful in applications than that applied to metals. Hence new approaches have been created lately in composite
micro-mechanics [3] to investigate a stress distribution caused by external loading and interaction of structural
inhomogeneities. Additional fundamental difficulties appear in the analysis of micro–macro problems when micro-
inclusions and their spacing have a length-scale that is a few orders of magnitude smaller than the length-scales of
the macroscopic problem. So it is very important that the displacements outside the inclusion and the stresses on
the inclusion surface become known, once the inclusion strains have been computed.

It is well known that the problem involving geometrically nonlinear materials has hardly been investigated.
For deriving the second-order elasticity equations, one uses the method of successive approximation [16] with a
power-series expansion of the displacements, stresses, and their gradients in a certain small parameter. The case
of a finite concentration of ellipsoidal elastic inclusions was analyzed in [10,18,20] by the method of conditional
moments at each step of a successive approximation. The average strains in the components estimated at the first
step were used at the second step or, in other words, one used linearization. Other methods for analyzing nonlinear
properties are based on the incremental method or the tangent modulus concept [9]. Other remarkable achievements
in the theory of nonlinear composites of random structures are related to generalizations of Hashin and Shtrikman
variational principles that are applicable to nonlinear materials as proposed in [5,28]. In contrast to the extensive
work on the linear elastic behavior of composites, a study of their mechanical behavior beyond the linear elastic
regime, in particular, the viscoelastic one, is very limited.

Since methods of averaged strains only allow estimating the averaged stresses in the components, their use for
linearizing functions describing nonlinear effects, e.g. strength predictions, creep and rupture, might lead to crude
estimates because of the significant inhomogeneity of the stress fields in the individual phases, especially in the
matrix near inclusions. So we have obtained here expressions for the relaxation functions and stress-concentration
parameters averaged over the viscoelastic matrix and the elastic inclusions.

Within the proposed method one constructs a hierarchy of statistical-moment equations for the conditional aver-
ages of the stresses in the matrix and inclusions. The influence of the shape and the orientation of the inclusions on
the viscoelastic fields, as well as stress-concentration factors near inclusions are estimated.

Some examples show the importance of the mutual influence of the thermo-elastic and viscous properties of the
constituents on stress redistribution near inclusions in multi-component PCM. A more detailed numerical analysis
will be presented in a next paper.

The most important extension of this work concerns using it to determine the second moment of the viscoelastic
stress playing a fundamental role in a wide class of nonlinear viscoelastic problems, damage initiation and evolution,
etc. The case of a viscoelastic inclusion and a matrix will be considered next. The developed method has a variety
of applications in the mechanics of composites. Special attention may be given to the problem of the continuum
estimate of the effective thermo-viscoelastic properties of nanocomposites.
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